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Introduction

d This study shows spatio-temporal prediction for fine
particulate matter pollutants performed using deep-
learning techniques.

d Usage of hybrid CNN-LSTM model is proposed to
Improve the performance of prediction models.

 Consistent predictions can assist In
iInformation to urban residents.

providing

Study area

 South Delhi area of Delhi, India, with four static

monitors.
1 Area is divided into 15 hexagonal grids of 5 km.
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Fig 1: Study area in Delhi, India

Data

d Secondary data of hourly PM concentration and
meteorological data is collected from Central Pollution

Control Board, India.
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Fig 2: Correlation between PM, . and meteorological parameters
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Methodology

d Steps for development of prediction models using
secondary data:

Model architecture
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Fig 3: Architecture for CNN, LSTM, and proposed CNN-LSTM model
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Results

d MAE and RMSE values are lower for majority of
grids compared to CNN and LSTM models.
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Fig 4: Mean absolute error in each model for all grids
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Fig 5: Root mean square error in each model for all grids

 Order of performance and accuracy of results:
CNN-LSTM > LSTM > CNN
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Fig 6: Results of CNN (top), LSTM (middle), and CNN-LSTM (bottom) for
cell H (left) and N (right), for time period from May 01, 2021 to June 30,

2021.
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Fig 7: Results of CNN (top), LSTM (middle), and CNN-LSTM (bottom) for cell
K, for time period from May 01, 2021 to June 30, 2021.

L Spatial variation is observed between peak hour and off
E)eak hour In different seasons (Fig 8).

b) June 28, 2021 -, . .

Fig 8: Spatial prediction of PM, ;. from CNN-LSTM for two days in peak hour
(left) and off peak hour scenario (right).

Conclusions

It is observed that proposed architecture of CNN-LSTM
outperforms conventional CNN and LSTM approach.

d The prediction models considering dynamic monitoring
data can assist travelers in receiving information about
air pollution in real-time.

d Based on previous 72 hours data, next hour PM
concentration is predicted.

 The model is flexible, and dynamic monitoring network
can be accommodated in proposed framework.
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