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❑This study shows spatio-temporal prediction for fine

particulate matter pollutants performed using deep-

learning techniques.

❑Usage of hybrid CNN-LSTM model is proposed to

improve the performance of prediction models.

❑ Consistent predictions can assist in providing

information to urban residents.
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❑ It is observed that proposed architecture of CNN-LSTM

outperforms conventional CNN and LSTM approach.

❑The prediction models considering dynamic monitoring

data can assist travelers in receiving information about

air pollution in real-time.

❑Based on previous 72 hours data, next hour PM

concentration is predicted.

❑The model is flexible, and dynamic monitoring network

can be accommodated in proposed framework.

Fig 1: Study area in Delhi, India
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❑ Secondary data of hourly PM concentration and

meteorological data is collected from Central Pollution

Control Board, India.

Fig 2: Correlation between PM2.5 and meteorological parameters

Fig 4: Mean absolute error in each model for all grids

Fig 5: Root mean square error in each model for all grids
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Fig 8: Spatial prediction of PM2.5 from CNN-LSTM for two days in peak hour

(left) and off peak hour scenario (right).

a) Feb. 01, 2021

b) June 28, 2021

Fig 7: Results of CNN (top), LSTM (middle), and CNN-LSTM (bottom) for cell

K, for time period from May 01, 2021 to June 30, 2021.

Fig 6: Results of CNN (top), LSTM (middle), and CNN-LSTM (bottom) for

cell H (left) and N (right), for time period from May 01, 2021 to June 30,

2021.
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❑ MAE and RMSE values are lower for majority of

grids compared to CNN and LSTM models.

❑ Order of performance and accuracy of results:

CNN-LSTM > LSTM > CNN

Fig 3: Architecture for CNN, LSTM, and proposed CNN-LSTM model

❑ Steps for development of prediction models using

secondary data:

❑ South Delhi area of Delhi, India, with four static

monitors.

❑ Area is divided into 15 hexagonal grids of 5 km.

❑ Spatial variation is observed between peak hour and off

peak hour in different seasons (Fig 8).
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